Global SH-wave propagation using a parallel axisymmetric spherical finite-difference scheme: application to whole mantle scattering

Gunnar Jahnke1,*, Michael S. Thorne2, Alain Cochard1† and Heiner Igel1

1Department of Earth and Environmental Sciences, Ludwig Maximilians Universität, Theresienstrasse 41, 80333 Munich, Germany. E-mail: jahnke@sdac.hannover.bgr.de
2Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112-0111, USA

Accepted 2008 January 22. Received 2008 January 16; in original form 2006 November 10

SUMMARY

We extended a high-order finite-difference scheme for the elastic SH-wave equation in axisymmetric media for use on parallel computers with distributed memory architecture. Moreover, we derive an analytical description of the implemented ring source and compare it quantitatively with a double couple source. The restriction to axisymmetry and the use of high performance computers and PC networks allows computation of synthetic seismograms at dominant periods down to 2.5 s for global mantle models. We give a description of our algorithm (SHaxi) and its verification against an analytical solution. As an application, we compute synthetic seismograms for global mantle models with additional stochastic perturbations applied to the background S-wave velocity model. We investigate the influence of the perturbations on the SH wavefield for a suite of models with varying perturbation amplitudes, correlation length scales, and spectral characteristics. The inclusion of stochastic perturbations in the models broadens the pulse width of teleseismic body wave arrivals and delays their peak arrival times. Coda wave energy is also generated which is observed as additional energy after prominent body wave arrivals. The SHaxi method has proven to be a valuable method for computing global synthetic seismograms at high frequencies and for studying the seismic waveform effects from models where rotational symmetry may be assumed.

Key words: Body waves; Computational seismology; Wave scattering and diffraction; Wave propagation.

1 INTRODUCTION

Despite the ongoing increase of computational performance, full 3-D global seismic waveform modelling is still a challenge and far from being a routine tool for understanding the Earth’s interior. Yet, for teleseismic distances, a substantial part of the seismic energy travels in the great circle plane between source and receiver and can be approximated assuming invariance in the out of plane direction. This motivates algorithms which take advantage of this invariance with a much higher efficiency compared to full 3-D methods. A straightforward realization is to ignore the out of plane direction and compute the wavefield along the two remaining dimensions. For example, Furumura et al. (1998) developed a pseudospectral scheme in cylindrical coordinates and invariance in the direction parallel to the axis of the cylinder for modelling P–S wave propagation down to depths of 5000 km. This geometry corresponds to a physical 3-D model with the seismic properties invariant along the direction not explicitly modelled. As a consequence, the seismic source is a line source having a substantially different geometrical spreading compared to more realistic point sources.

A different approach which circumvents the line source problem is the axisymmetric approach. Here the third dimension is omitted as well, but the corresponding physical 3-D model is achieved by virtually rotating the 2-D domain around a symmetry axis. Seismic sources are placed at or nearby the symmetry axis and act as point sources maintaining the correct geometrical spreading. Since such a scheme can be seen as a mixture between a 2-D method (in terms of storage needed for seismic model and wavefield) and a 3-D method (since point sources with correct 3-D spreading are modelled) such methods are often referred to as 2.5-D methods.

A variety of axisymmetric approaches have been used in the last decades (e.g. Alterman & Karal 1968). Axisymmetric wave propagation for SH-waves in spherical coordinates with a FD technique was implemented by Igel & Weber (1995) to calculate seismograms for global earth models and also by Chaljub & Tarantola (1997) to study frequency dependent effects of S and SS waves. Furumura & Takenaka (1996) applied a pseudospectral approach to regional applications for distances up to 50 km. Igel & Gudmundsson (1997) also used a FD method to study frequency dependent effects of S...

The main purpose of this paper is to (1) extend the axisymmetric FD approach of Igel & Weber (1995) for modelling SH-wave propagation (SHaxi) for use on parallel computers with distributed memory architecture, (2) examine the properties of the implemented ring source and to show that it can be compared with a double-couple source and (3) as an application, to model the influence of whole mantle scattering on the seismic SH wavefield. We furthermore present an application of the SHaxi method to modelling the SH-wavefield in models of whole mantle random S-wave velocity perturbations. In a companion paper (Thorne et al. 2007) we make an extensive comparison of SHaxi generated seismograms with results from recent data analyses of lower-mantle structure. The SHaxi source code is available at: http://www.spicetrn.org/library/software.

2 THE AXISYMMETRIC FINITE-DIFFERENCE SCHEME

2.1 Formulation of the wave equation

The general 3-D velocity stress formulation of the elastic wave equation in spherical coordinates is given by Igel (1999). The coordinate system is shown in Fig. 1. The relevant equations for pure SH-wave generation are:

$$\rho \frac{\partial}{\partial t} v_\phi = \frac{\partial}{\partial r} \sigma_{r\phi} + \frac{1}{r} \frac{\partial}{\partial \theta} \sigma_{\theta \phi} + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \sigma_{\phi \phi} + \frac{1}{r} (3 \sigma_{r \phi} + 2 \sigma_{\theta \phi} \cot \theta + f_\phi)$$

$$\frac{\partial}{\partial t} v_\theta = \frac{1}{r} \left(\frac{1}{r} \frac{\partial}{\partial r} v_\phi + \frac{\partial}{\partial \theta} v_\phi - \frac{\cot \theta}{r} v_\phi \right)$$

$$\frac{\partial}{\partial t} v_\phi = \frac{1}{r} \left(\frac{\partial}{\partial \theta} v_\theta + \frac{\partial}{\partial \phi} v_\phi - \frac{1}{r} v_\phi \right)$$

(1)

where σ_{ij} is stress tensor, v_{ij} is ij-component of velocity, f_ϕ is external force, ϵ_{ij} is strain tensor and ρ is density.

In the axisymmetric system, eq. (1) can be further simplified by assuming the external source and model parameters are invariant in the ϕ-direction. The resultant equations are:

$$\rho \frac{\partial}{\partial t} v_\phi = \frac{\partial}{\partial r} \sigma_{r\phi} + \frac{1}{r} \frac{\partial}{\partial \theta} \sigma_{\theta \phi} + \frac{1}{r} (3 \sigma_{r \phi} + 2 \sigma_{\theta \phi} \cot \theta + f_\phi)$$

$$\frac{\partial}{\partial t} v_\theta = \frac{1}{r} \left(\frac{1}{r} \frac{\partial}{\partial r} v_\phi + \frac{\partial}{\partial \theta} v_\phi - \frac{\cot \theta}{r} v_\phi \right)$$

$$\frac{\partial}{\partial t} v_\phi = \frac{1}{r} \left(\frac{\partial}{\partial \theta} v_\theta + \frac{\partial}{\partial \phi} v_\phi - \frac{1}{r} v_\phi \right)$$

(2)

Due to axisymmetry, spatial properties vary solely in the r and θ-directions. Hence the computational costs of this formulation are comparable to 2-D methods, while the correct 3-D spreading of the wavefield is still preserved, in contrast to purely 2-D methods, provided the source is centred at the symmetry axis. Due to the $\cot(\theta)$ term in eq. (2), SH motion is undefined directly on the symmetry axis and the seismic source can not be placed there. We discuss the seismic source below.

A staggered grid scheme was used for the discretization of the seismic parameters, so the stress components and the velocity are calculated at different locations. A schematic representation of the grid is shown in Fig. 2. In addition to the gridpoints which define the model space, auxiliary points were added above the Earth's surface, below the core–mantle boundary (CMB) and beyond the symmetry axis ($\theta < 0^\circ$ and $\theta > 180^\circ$) for the calculation of the boundary conditions (discussed below).

2.2 The properties of the SH ring source

Due to axisymmetry it is not possible to implement sources which generate the SH portion of an arbitrary oriented double couple. Moreover, exact point sources are not possible since SH motion is not defined directly at the axis but can be approximated when the wavelength of interest is made sufficiently larger than the grid size. We will discuss the properties of the implemented axisymmetric SH source and show that its displacement far-field is proportional to that of an appropriately oriented double-couple source.

2.2.1 Ring source expression

The SH ring source corresponds to the one used by Chaljub & Tarantola (1997) which found that the relative amplitude of the source depends on the take-off angle γ as $\sin(\gamma)$. However, the complete source solution was not given although this is essential to perform a quantitative comparison of numerical and analytical solution. In order to derive the analytical solution of an SH ring source.
of infinitesimal size in a homogeneous isotropic elastic media, it is convenient to use eq. (4.29) of Aki & Richards (2002), which gives the displacement field due to couples of forces, each of moment M_{pq}.

We start by noting that the ring source can be seen as the summation of individual couples of forces F over half the perimeter of a circle (see Fig. 3), keeping in mind that the radius R ultimately tends to 0 and the forces tend to $+\infty$, so as to have a finite moment (this is analogous to the discussion p. 76 of Aki & Richards 2002).

Projecting the forces on the axes x_1 and x_2, we can write that the moment due to this couple is

$$dM(\psi) = 2F \cos(\psi) R \cos(\psi) - 2F \sin(\psi) R \sin(\psi),$$

where $F = |\vec{F}|$, and Ψ the orientation of the individual couple of forces F (see Fig. 3).

Obviously, the total moment M_0 due to the ring force is $M_0 = 2\pi FR$, so the contributions from M_{21} and M_{12} are $(M_0/\pi) \cos^2(\Psi)$ and $-(M_0/\pi) \sin^2(\Psi)$, respectively. Inserting those expressions in eq. (4.29) of Aki and Richards (2002), and further integrating from 0 to π, provides the full displacement field of an SH ring source of infinitesimal size:

$$v_{\text{Ring}}(s, \gamma, t) = \sin(\gamma) \frac{-\beta M_0(t - s/\beta) + s M_0(t - s/\beta)}{8\pi \rho \beta^2 s^2},$$

where v_{Ring} is ψ-component of displacement, ρ is density, β is S-wave velocity, $M_0(t)$, $M_0(t)$ are seismic moment and moment rate, t is S-wave traveltime, s is source–receiver distance and γ is take-off angle (see Fig. 1). This source will be compared with the far-field term of a strike-slip source (in the x_1/x_3 plane with slip along x_1) in the nodal plane for P radiation ($\phi = 0$). Using the equations analogous to eqs (4.32) and (4.33) of Aki & Richards (2002) (with

© 2008 The Authors, GJI
Journal compilation © 2008 RAS
appropriate permutation of axis) we get:

\[v^{DC}(s, \gamma, t) = \sin(\gamma) \frac{M_0(t - s/\beta)}{4\pi\rho\beta^2 s}. \] (5)

We see that the far-field terms in eqs (4) and (5) only differ by a factor 2. Hence, in the nodal plane for \(P \) radiation and for distances where the near and intermediate term can be neglected (i.e. more than a few dominant wavelengths, which is fulfilled for teleseismic investigations), the wavefield of the \(SH \) ring source of infinitesimal size can be compared to that of the corresponding strike-slip source.

In contrast to the infinitesimal \(SH \) ring source described by eq. (4), the source implemented in \(SHaxi \) is a finite ring. Yet, as we show in Section 3, the similarity between seismograms calculated for either source is close enough that the approximation of an infinitesimal ring source can be made.

2.3 Boundary conditions

At the symmetry axis, the free surface, and the CMB, adequate boundary conditions must be applied. For the horizontal surfaces (the CMB can be treated similarly to the free surface since \(SH \) waves reflect totally at both boundaries) the boundary condition is given by the zero-stress condition which requires \(\sigma_{r\phi} = 0 \) for the surface (e.g. Levander 1988; Graves 1996). Due to the staggered grid scheme \(\sigma_{r\phi} \) is not defined exactly on the free surface but a half-grid spacing below the surface (Fig. 2). Therefore, the zero-stress condition is realized by giving the auxiliary \(\sigma_{r\phi} \) gridpoints above the surface the inverse values of their counterparts below the surface at each time step (Fig. 4). This results in a vanishing stress component at the surface in a first order sense. For the symmetry axis, the boundary conditions are derived from geometric constraints: all gridpoints beyond the axis are set to the values of their partners inside the model space, meaning that the fields are extended according to the axisymmetry condition. Directly at the axis \(v_\phi \) and \(\sigma_{r\phi} \) are set to zero since both values are undefined here according to eq. (2).

In general, the number of rows of auxiliary gridpoints which have to be added correspond to half the length of the FD operator used for the boundary condition. This enables the FD operator to operate across the boundary and calculate a derivative for gridpoints residing directly at the boundary. For the simulations shown here a FD operator length of 2 at the model boundaries corresponding to one row of extra gridpoints is added. For the boundary at the symmetry axis this choice is crucial because convergence to the analytical solution is achieved only for the two-point FD operator. We do not yet understand why higher order operators fail here. For the gridpoints off of the boundaries a four-point FD operator is used.

![Figure 4. Detail of the top left-hand corner of the \(SHaxi \) grid where the free surface and symmetry boundaries are encountered. The interior gridpoints (region underlain in grey) are part of the physical model space. To fulfill the boundary conditions, gridpoints outside of the physical model space (region not underlain in grey) must be added to the total grid. These outer points are updated at each time step by corresponding values of grid elements inside the physical model space, as indicated by the arrows and the plus (+) and minus (−) symbols.](image-url)
Global SH-wave propagation using a parallel axisymmetric FD scheme

2.4 Parallelization

Actual high performance computers or workstation clusters usually consist of several units of processors (nodes) each having their own private memory. These nodes work independently and are interconnected for synchronization and data exchange. In order to take advantage of such systems the model space is divided horizontally in several ‘domains’. Each domain can now be autonomously processed by a single node. Fig. 5 shows such a ‘domain decomposition’ for a total number of three domains. Similarly to the implementation of the boundary conditions described above, auxiliary gridpoints are added adjacent to the domain boundaries for the communication between the nodes. This communication is implemented using the Message Passing Interface (MPI) library. The values of these auxiliary points are updated at each time step from their counterparts in the adjacent domain as indicated by the arrows in Fig. 5 (points with identical column indices—underlain in grey). The number of columns of the auxiliary points must be equal to half of the FD operator length. We use a four-point FD operator inside the model; therefore, the auxiliary regions must be 2 points wide.

2.5 Computational costs

Compared to 3-D modelling techniques the resources necessary for SHaxi simulations are comparatively low. Simulations with relatively long periods \(\sim 10–20 \text{ s} \) can be done on a single PC within a couple of hours. For shorter periods the required memory and processing time increases strongly. The highest achievable dominant frequency \(f_{\text{DOM}}\) of the seismograms is inversely proportional to the grid spacing \(dx\), whereas the time increment between two iterations is proportional to \(dx\). Thus the memory needed to store the (2-D) grids is proportional to \(f_{\text{DOM}}^2\) and the time needed to perform a simulation is proportional to \(f_{\text{DOM}}^3\). A further performance increase can be achieved by limiting the model space in \(\theta\)-direction by the maximum epicentral distance of interest. This reduces the number of gridpoints and consequently the needed memory and simulation time. The requirements on the system used for the simulations in this study give an idea about the achievable frequencies on supercomputers and PC clusters. The 24-node, 2.4 GHz PC-cluster located at Arizona State University is capable of computing dominant periods down to 6 s for \(S\) waves at 80° distance (Table 1). For a simulation time of 2700 s the run time was about 2.6 h and each node needed

Table 1. Example SHaxi parameters and performance—Linux Cluster.

<table>
<thead>
<tr>
<th>npts(^a) ((\theta))</th>
<th>Grid size (\text{d}\theta) (km)</th>
<th>Number of time steps</th>
<th>Memory usage(^c) (Mb)</th>
<th>Dominant period(^d) (s)</th>
<th>Run time(^e)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000/24</td>
<td>4.0/2.2</td>
<td>1000</td>
<td>2.9</td>
<td>16 894</td>
<td>17</td>
</tr>
<tr>
<td>10 000/24</td>
<td>2.0/1.1</td>
<td>1800</td>
<td>1.6</td>
<td>33 785</td>
<td>52</td>
</tr>
<tr>
<td>15 000/24</td>
<td>1.3/0.7</td>
<td>2900</td>
<td>1.0</td>
<td>50 758</td>
<td>122</td>
</tr>
<tr>
<td>20 000/24</td>
<td>1.0/0.5</td>
<td>3800</td>
<td>0.76</td>
<td>67 649</td>
<td>210</td>
</tr>
<tr>
<td>30 000/24</td>
<td>0.7/0.4</td>
<td>5200</td>
<td>0.55</td>
<td>101 512</td>
<td>428</td>
</tr>
</tbody>
</table>

\(^a\)Values are: total number of gridpoints/number of processors used.

\(^b\)Values are: \(\text{d}\theta\) (at Earth surface)/\(\text{d}\theta\) (at CMB).

\(^c\)Memory is reported as total memory (code size + data size + stack size) for one processor; Code size is \(\sim 800\) kb.

\(^d\)Dominant Period based on phase and epicentral distance listed for a source depth of 500 km.

\(^e\)Total run time is based on 2700.0 s of simulation time.
A first comparison of axisymmetric FD methods was done by Igel et al. (2000). Good waveform fits of single seismograms were achieved for body waves, although the SH source was not examined in detail. In order to show that the SHaxi method provides the correct wavefield we compare synthetic seismograms for two receiver setups with the analytical solution of a ring source (eq. 4) in an infinite homogeneous media, with parameters shown in Table 3. The size of the numerical model was chosen so that reflected waves from the model boundaries were significantly delayed and, therefore, not interfering with the time window of interest. To quantify the difference between synthetic seismograms computed using SHaxi with the analytic solution, the energy misfit of the seismograms was computed. The energy misfit E of a time-series x_i with respect to a reference series y_i is given by:

$$E = \frac{\sum (x_i - y_i)^2}{\sum y_i^2}.$$

(e.g. Igel et al. 2001). Good agreement between the seismograms and the analytic solution can be said to be attained if the energy misfit is below 1 per cent. Two receiver configurations, shown in Figs 6(a) and 7(a), were used for the following purposes: (1) a circular array consisting of 15 evenly spaced receivers placed on a half circle with the source in its centre. This setup covers the whole range of possible take-off angles and is optimally suited for investigating the angular variation of the radiation pattern. In this setup the entire range of take-off angles is covered. (b) Numerical FD (red solid line) and analytical (black solid line) seismograms for the array. The dashed line on top shows the difference trace for receiver no. 8 scaled by a factor of 25; (c) The maximum FD amplitudes of all traces (red filled circles) are plotted on top of the analytical curve (solid line). (d) The energy misfit of the FD solution with respect to the analytical solutions. Receivers 01 and 15 are on the nodal SH plane and the energy misfit is undefined. The energy misfit across all receivers is less than 0.3 per cent.

Table 2. Example SHaxi parameters and performance—‘Iceberg’ supercomputer.

<table>
<thead>
<tr>
<th>Grid size a</th>
<th>Number of nodes b</th>
<th>Simulation time $=1800$ s</th>
<th>Simulation time $=2700$ s</th>
</tr>
</thead>
<tbody>
<tr>
<td>npts (θ)</td>
<td>npts (r)</td>
<td>Number of time steps</td>
<td>Run time</td>
</tr>
<tr>
<td>5000</td>
<td>1000</td>
<td>4</td>
<td>11 281</td>
</tr>
<tr>
<td>10 000</td>
<td>1800</td>
<td>4</td>
<td>22 560</td>
</tr>
<tr>
<td>10 000</td>
<td>1800</td>
<td>8</td>
<td>22 560</td>
</tr>
<tr>
<td>15 000</td>
<td>2900</td>
<td>8</td>
<td>33 838</td>
</tr>
<tr>
<td>15 000</td>
<td>2900</td>
<td>12</td>
<td>33 838</td>
</tr>
<tr>
<td>20 000</td>
<td>3800</td>
<td>12</td>
<td>45 099</td>
</tr>
<tr>
<td>20 000</td>
<td>3800</td>
<td>16</td>
<td>45 117</td>
</tr>
<tr>
<td>30 000</td>
<td>5200</td>
<td>16</td>
<td>67 675</td>
</tr>
</tbody>
</table>

a Corresponding grid spacing is listed in Table 1.

b Each node consists of an IBM p655+ node, with 8 processors per node, and 16 Gb shared memory. Processor speed is 1.5 GHz.

428 Mb of memory. The 5 TFlop s$^{-1}$ system of the Arctic Region Supercomputing Center ‘Iceberg’ needed for the same run about 1.0 s 0.6 s 1.0 s 0.6 s

Table 3. Simulation parameters used in SHaxi verification.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Linear array</th>
<th>Circular array</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_S</td>
<td>2000 m s$^{-1}$</td>
<td>2000 m s$^{-1}$</td>
</tr>
<tr>
<td>Density (ρ)</td>
<td>2000 kg m$^{-3}$</td>
<td>2000 kg m$^{-3}$</td>
</tr>
<tr>
<td>d_r</td>
<td>77.5 m</td>
<td>38.7 m</td>
</tr>
<tr>
<td>R_d</td>
<td>48.9 m</td>
<td>24.4 m</td>
</tr>
<tr>
<td>T_{dom}</td>
<td>1.0 s</td>
<td>0.6 s</td>
</tr>
<tr>
<td>λ_{dom}</td>
<td>2000 m</td>
<td>1200 m</td>
</tr>
<tr>
<td>Points per wavelength</td>
<td>20 (radial)</td>
<td>40 (lateral)</td>
</tr>
<tr>
<td>Receiver spacing</td>
<td>976 m</td>
<td>13.5°</td>
</tr>
<tr>
<td>Source–receiver distance</td>
<td>Varies</td>
<td>5859 m</td>
</tr>
</tbody>
</table>

θ Normalized Amplitude

Energy Misfit (%)
Angular source radiation and (2) a linear array with the receivers placed on a straight horizontal line originating from the source. With this linear array the propagation effects and the spreading for a constant take-off angle and varying source receiver distance can be investigated. Table 3 lists the simulation parameters for the two setups. Fig. 6 shows the results for the circular array. In Fig. 6(b) the computed seismograms (red) together with the analytical traces (black) are displayed. To make the difference between both solutions apparent, the topmost trace shows the difference trace for receiver no. 8 scaled by a factor of 25. Fig. 6(c) shows the radiation pattern for all computed traces (marked with red circles) together with the analytical curve \(f(\gamma) = \sin(\gamma) \), with \(\gamma \) the take-off angle, plotted with solid lines. The SHaxi radiation pattern is calculated from the maximum amplitudes of the individual seismogram traces.

Fig. 6(d) shows the energy misfit between the SHaxi solution and eq. (4). The energy misfit is well below 0.4 per cent and depends on the take-off angle. For steep angles the accuracy of the solution decreases. This behaviour is caused by the boundary condition for the symmetry axis which works best for take-off angles perpendicular to the axis.

In summary, the method is capable of computing the far-field portion of a strike-slip source in the nodal plane for \(P \) radiation. Thus, for teleseismic investigations where the wavefield travels many dominant wavelengths to the receiver SHaxi provides correct seismograms. In the next Section we will show an SHaxi application which illustrates the potential of this method.

4 APPLICATION: SCATTERING FROM THE WHOLE MANTLE

Propagating seismic waves lose energy due to geometrical spreading, intrinsic attenuation and scattering attenuation. The scattering, or interaction with small spatial variations of material properties, of seismic waves affects all seismic observables including amplitudes and traveltimes and also gives rise to seismic coda waves. In order to demonstrate the usability of the SHaxi method at high frequencies we present a comparison of synthetics computed from purely elastic models that have been stochastically perturbed from the PREM reference model (Dziewonski & Anderson 1981).

A central question for the interpretation of such axisymmetric scattering models is how parameters such as perturbation amplitude and correlation length of the axisymmetric model can be transferred to the corresponding 3-D perturbations of the Earth’s mantle. Unfortunately, no numerical comparison of 3-D versus axisymmetric scattering models has been performed yet. Such a study would require extremely high computational resources in order to generate synthetics for full 3-D geometries at the dominant periods of interest and is beyond the scope of this paper. Nevertheless, the insights would be highly valuable, for example, for the calibration of other scattering simulation methods. A candidate method for such a study is the spectral-element method (Komatitsch & Tromp 1999). Stochastic approaches like the multiphonon method (Shearer & Earle 2004) may provide a more realistically obtainable comparison. Alternatively, we discuss here the expected influence of axisymmetry on the seismic wavefield from plausibility considerations and by comparison with comparable studies:

For models with no variations perpendicular to the great circle plane, axisymmetric and 3-D modelling provide the same results.
However, for the Earth’s mantle a locally varying, arbitrary oriented structure is plausible which is impossible to parameterize using an axisymmetric system. Instead, axisymmetric stochastic models are invariant in out-of-plane direction, resulting in model variations which are actually ring shaped with the centre at the symmetry axis.

This geometry causes two significant competing effects on the coda of the seismograms: (1) scattered energy can not get lost by radiation off the great circle plane which leads to an enhanced contribution to the scattering amplitudes. In opposition to this effect and (2) in 3-D random media the initial waveform will encounter more possible scatterers than in 2-D and thus contributions from off-plane scattering to the seismogram coda are missing in the axisymmetric case, which causes a reduction of the scattering amplitudes. It is unclear which of these two effects is dominant and the authors are unaware of any studies that have quantified the two effects for 2-D versus 3-D geometries on the shape and characteristics of the coda wave train.

For a precise understanding of these effects the aforementioned 3-D calculations have to be performed. However, results from Frenje & Juhlin (2000) provide indications that the influence on the scattering coda is negligible. Frenje & Juhlin compared Cartesian 2-D and 3-D finite-difference simulations with single scattering theory. They found no significant differences between 2-D and 3-D simulations when measuring scattering attenuation, except that 2-D simulations provide less stable results of the derived parameters. This increased instability of 2-D simulations is caused by the stronger influence of the specific model realization for a given set of model parameters. The off-plane model variations in the 3-D case average out the effects of the specific model realization on the scattering coda, whose properties depend mainly on perturbation amplitude and correlation length. For 2-D simulations this averaging process does not exist. However, stable model parameters can be derived by analysing multiple realizations of a set of model parameters.

4.1 Inference of whole mantle scattering

Many techniques have been developed to study the properties of seismic scattering (see Sato & Fehler 1998 for a discussion on available techniques). Advances in computational speed have allowed numerical methods such as FD techniques to be used in analysing seismic scattering (e.g. Frankel & Clayton 1984, 1986; Frankel 1989; Wagner 1996). The majority of FD studies have thus far focused on S-wave scattering in regional settings with source–receiver distances of just a few hundred kilometres. Thus, these recent advances have greatly improved our understanding of scattering in the lithosphere where strong scattering is apparent with V_S perturbations on the order of 5 km in length and 5 per cent rms velocity fluctuations (e.g. Saito et al. 2003).

Recently, small-scale scattering has been observed near the CMB. Cleary & Haddon (1972) first recognized that precursors to the PKP phase may be due to small scale heterogeneity near the CMB. Hedlin et al. (1997) also modelled PKP precursors, with a global data set. They concluded that the precursors are best explained by small-scale heterogeneity throughout the mantle instead of just near the CMB. Hedlin et al.’s (1997) finding suggests scatterers exist throughout the mantle with correlation length scales of roughly 8 km and 1 per cent rms velocity perturbation. Margerin & Nolet (2003) also modelled PKP precursors corroborating the Hedlin et al. (1997) study that whole mantle scattering best explains the precursors, although Margerin & Nolet suggest a slightly smaller rms perturbation of 0.5 per cent on length scales from 4 to 24 km. Lee & Sato (2003) examined scattering from S and ScS waves beneath central Asia, finding that scattering from ScS waves may dominate over the scattering from S waves at dominant periods greater than 10 s and that as much as 80 per cent of the total attenuation of the lower mantle may be due to scattering attenuation. Because Lee & Sato (2003) used radiative transfer theory to model the scattering coefficient, it is not possible to directly translate the scattering coefficients determined in their study to correlation length scales or rms perturbations (Haruo Sato 2005, personal communication) for comparison with the studies of Hedlin et al. (1997) or Margerin & Nolet (2003). Nevertheless, their conclusion is important in that whole mantle scattering is necessary to model their data.

Baig & Dahlen (2004) sought to constrain the maximum allowable rms heterogeneity in the mantle as a function of scale length. Their study also suggests that as much as 3 per cent rms S-wave velocity perturbations are possible for the entire mantle for scale lengths less than about 50 km. Baig & Dahlen (2004) also suggest that in the upper 940 km of the mantle, scattering may be twice as strong as in the lower mantle. The suggestion of stronger upper-mantle scattering is also supported by Shearer & Earle (2004). They find that, in the lower mantle, 8 km scale length heterogeneity with 0.5 per cent rms perturbations can explain P and PP coda for earthquakes deeper than 200 km. They also find that shallower earthquakes require stronger upper-mantle scattering with 4-km scale lengths and 3–4 per cent rms perturbations.

Although a growing body of evidence suggests that whole mantle scattering is necessary to explain many disparate seismic observations, the characteristic scale lengths and rms perturbations are determined using analytical and semi-analytical techniques which in many cases are based on single-point scattering approximations and do not synthesize waveforms. As whole mantle scattering may affect all aspects of seismic waveforms, it is thus important to synthesize global waveforms with the inclusion of scattering effects. The first attempt at synthesizing global waveforms was by Cormier (2000). He used a 2-D Cartesian pseudo-spectral technique to demonstrate that the D'' discontinuity may be due to an increase in the heterogeneity spectrum. Cormier (2000) suggests that as much as 3 per cent rms perturbations may be possible for length scales down to about 6 km.

In this study, we generate a suite of random models of different statistical properties based on PREM. Seismograms of these models are compared and discussed. Moreover the potential and the restrictions of the SHaxi method concerning investigations on whole mantle scattering are discussed.

4.2 Implementation of random velocity perturbations in SHaxi

Models of random velocity perturbations (referred to as random media hereafter) are characterized by their spatial autocorrelation function (ACF), the Fourier transform of which equals the power spectrum of the velocity perturbations. Construction of random media for FD simulations is implemented using a Fourier based method (e.g. Frankel & Clayton 1986; Ikelle et al. 1993; Sato & Fehler 1998) which can be written as a convolution:

$$M(x_i, y_k) = R(x_i, y_k) * ACF(x_i, y_k),$$

where x_i, y_k is coordinates of a Cartesian grid, $R(x_i,y_k)$ is random matrix, $ACF(x_i,y_k)$ is autocorrelation function, $M(x_i,y_k)$ is the resulting model perturbation and $*$ is the convolution operator. For performance issues the convolution is replaced by multiplication in

© 2008 The Authors, GJI
Journal compilation © 2008 RAS
the Fourier space using the 2-D fast Fourier transform \mathcal{F} and its inverse \mathcal{F}^{-1}:

$$M(x_i, y_j) = \mathcal{F}^{-1}[\mathcal{F}[R(x_i, y_j)] \mathcal{F}[ACF(x_i, y_j)]].$$ \hfill (8)

The most popular choices of ACFs are defined in Frankel & Clayton (1986) as:

Gaussian: $ACF(x, y) = e^{-r^2/a^2}$, \hfill (9)

Exponential: $ACF(x, y) = e^{-r/a}$, \hfill (10)

vonKarman: $ACF(x, y) = \frac{1}{2^{w+1}\Gamma(m)} \left(\frac{r}{a} \right)^w K_m \left(\frac{r}{a} \right)$, \hfill (11)

where r is the offset or spatial lag: $r = \sqrt{x^2 + y^2}$, a is the autocorrelation length (ACL), $K_m(x)$ is a modified Bessel function of the second kind of order m and $\Gamma(m)$ is the gamma function. The power spectrum of an ACF is flat out to a corner wavenumber that is roughly proportional to the inverse of the ACL. From the corner wavenumber the power spectrum asymptotically decays. The primary difference between ACFs is their roughness, which is defined as how fast the rate of fall off is in the decaying portion of the power spectrum. The most important factor that the roughness of the ACF affects is the frequency dependence of scattering (e.g. Wu 1982). We construct models of random media using the ACFs defined in eqs (9)-(11), noting that other choices of ACFs also exist (e.g. Klimeš 2002a, b).

Challenges arise in implementing random media in SHaxi as the Fourier technique (e.g. Frankel & Clayton 1986) is defined on a Cartesian grid and not on the spherical grid used in SHaxi. Using this Cartesian grid $M(x_i, y_j)$ directly as spherical grid in SHaxi would, therefore, lead to an artificial anisotropy due to the now decreasing grid spacing for increasing depth. To avoid this, $M(x_i, y_j)$ is first calculated on a very fine Cartesian grid which contains the SHaxi model space. Then the V_s perturbations at the SHaxi gridpoints $M(\theta_i, r_k)$ are interpolated from $M(x_i, y_j)$ using a near neighbor algorithm. The V_s perturbations are then applied to the PREM background model. V_s perturbations are clipped at ±3 times the rms V_s perturbation in order to avoid extreme perturbations that may affect the finite difference simulations. Analysis of the statistical properties of the original Cartesian random media $M(x_i, y_j)$ and the interpolated random media $M(\theta_i, r_k)$ on SHaxi’s grid show no significant difference. However, the creation of the very large initial Cartesian grid and the interpolation to the SHaxi gridpoints makes this method of model generation unhandy. A promising approach for a direct model generation using the Karhunen–Loève transform was recently developed by Thorne et al. (2008). Fig. 8 shows an example of random media interpolated onto SHaxi’s grid.

Fully 3-D random media cannot be incorporated in SHaxi because of the axisymmetric approximation. As explained in Section 1.1 model invariance in the ϕ-direction causes the random perturbations to effectively be zero in this direction. The effect of this apparent anisotropic ACF in SHaxi will likely be to produce less scattering than for fully 3-D models (e.g. Makinde et al. 2005). We compute synthetic seismograms for a suite of realizations of random media with ACLs of 8, 16 and 32 km and rms V_s perturbations of 1, 3 and 5 per cent. The ACL range corresponds to the scattering regime of SH waves, which typically have dominant periods in the order of 4 s and an average dominant wavelength of 24 km for the chosen geometry. We analyse the effect of these random V_s perturbations on S and ScS waveforms in the distance range 65°–75° for a source depth of 200 km.

4.3 Whole mantle scattering simulation results

The effect of random media on the seismic wavefield is shown in Fig. 9. The left part displays the seismic wavefield at one snapshot in time (300 s) for a 200-km-deep event for the unperturbed PREM.

Figure 8. Example of SHaxi model for which random V_s variations were applied to the PREM background model. In this example a Gaussian autocorrelation function was applied with a corner correlation length of 32 km. The rms S-wave velocity perturbation is 1 per cent and the maximum perturbation varies between ±3 per cent. The left model boundary at $\theta = 0^\circ$ is the symmetry axis.

© 2008 The Authors, GJI
Journal compilation © 2008 RAS
reference model. The wave fronts for the seismic phases S and sS are labelled. Smaller amplitude arrivals are also apparent, corresponding to reflections from the transition zone and upper-mantle discontinuities in the PREM model. The right part shows the effect on the wavefield for the same snapshot in time, when the PREM model has random V_s variations applied. The random variations were created with a Gaussian autocorrelation function with corner wavelength of 32 km and 3 per cent rms V_s perturbations.

The frequency dependence of scattering is displayed in Fig. 10. Here synthetics computed for an epicentral distance of 75° are shown for a Gaussian ACF with 3 per cent rms perturbations and ACL of 16 km overlain on top of synthetics computed for the PREM model. The effects of scattering are most pronounced for the shortest dominant period synthetics. Here the direct S-arrival is broadened with a delay of the peak energy of roughly 2 s. A similar effect is observed for the ScS arrival. Substantial energy is also seen between the S and ScS arrivals that do not appear in the PREM synthetics. However, for longer period waveforms, these scattering effects become less apparent, and for dominant periods of 20 s, the PREM and Gaussian ACF synthetics are nearly identical. This is due to the short-scale length of the random perturbations applied to the model. As the dominant wavelength of the propagating energy increases to values significantly greater than the dominant wavelength of the random media the propagating energy can much easier heal around the perturbations.

The effect of ACL on the waveform shape is demonstrated in Fig. 11 for models produced with Gaussian ACF’s. The largest amount of scattering is observed for the largest ACL of 32 km. Here the absolute amplitude of the S arrival is most significantly reduced as more energy is robbed from the direct S wave to go into later arrivals. Significant delay in S-wave peak arrival time is also apparent which may strongly affect the results of cross-correlation techniques at picking arrival times.

Note that there is potentially non-uniqueness in determining scattering structure. For many observable properties of the wavefield, such as delay time of peak arrivals, broadening of the arrivals wave packets, and coda energy, it may be very difficult to distinguish between various models. For example, A Gaussian ACF with ACL = 8 km and rms = 3 per cent behaves very similarly to an Exponential ACF with ACL = 32 km and rms = 1 per cent. Ultimately distinguishing between these various models will require examination of data in a range of frequencies.

4.4 Discussion of the scattering simulation results

Scattering in the mantle affects all parts of the seismic waveform and may account for a significant portion of the total attenuation we map into the lower mantle. We have implemented scattering in a global numerical method, but much work needs to be done in comparing our results with data and in producing more realistic models of mantle scattering. For example, models with anisotropic ACF’s in the lateral direction or models with differing ACL’s or ACF’s in different layers of the mantle may provide better approximations to the earth structure.

Yet, it is difficult to implement multilayered models using the Fourier technique to produce random velocity perturbations. Different models have to be constructed on Cartesian grids and then interpolated onto the SHaxi grid. This will produce undesirable
first-order discontinuities in between layers with different scattering properties.

SHaxi is a viable technique for which models of whole mantle scattering can be implemented. Although fully 3-D techniques exist, it is still impossible to model scattering in 3-D because current computational limits do not allow for computation of the wavefield at the small dominant periods where scattering effects are observed in the Earth. Furthermore, the SHaxi method may provide a better alternative to finite frequency approximations of scattering since the entire wavefield is computed and there is no reliance on single-point scattering approximations. Our results are calculated for elastic velocity models and do not include intrinsic attenuation. Inclusion of inelasticity may weaken the effects of multiple scattering (e.g. Yomogida & Benites 1996), yet future efforts should combine both attenuation mechanisms.

5 DISCUSSION AND CONCLUSIONS

In this paper, we presented a method to calculate high-frequency global SH seismograms for axisymmetric geometries. Axisymmetric methods fill the gap between 1-D methods which are often too limited to explain teleseismic observations and full 3-D methods, which require very high computational resources. On teleseismic scales the major portion of the wavefield propagates in the great circle plane. As a consequence, out of plane variations of the seismic properties can often be ignored. Although the computational effort of SHaxi is equivalent to 2-D methods the correct 3-D geometrical spreading is preserved in contrast to traditional 2-D methods. The applied ring-source in SHaxi is equivalent to a vertical strike-slip source for source–receiver distances larger than about five dominant wavelengths where the near and intermediate wavefields vanish. Although arbitrary sources cannot be modelled and comparisons with real seismograms cannot be directly made, the method can be used to probe many teleseismic questions. The method is especially suited to investigating relative amplitudes and/or traveltimes. Moreover when the take-off angle of the investigated phases is known, amplitude correction terms can be calculated. The reduction of computational effort has permitted exploration of teleseismic waveforms at frequencies where whole mantle scattering may come into play. For example, determination of the length scales and spatial location of small-scale seismic heterogeneity may provide important geodynamic implications, such as the degree of convective mixing in the mantle or compositional heterogeneity (e.g. van der Hilst & Kárason 1999; Davies 2002). Fixing the spatial extent of small-scale heterogeneity in the mantle may be challenging, however techniques focused on measuring differential attenuation may prove useful. A companion paper (Thorne et al. 2007) uses SHaxi to examine the high frequency waveform effects of recent data analyses for D^\prime discontinuity structure beneath the Cocos Plate region. As investigations of whole mantle scattering become more and more prominent, numerical techniques such as SHaxi that are capable of synthesizing waveforms with the inclusion of scattering will become important, as they have for regional scale modelling.

ACKNOWLEDGMENTS

GJ was supported by the German Research Foundation (DFG, Project Ig16/2). MT was partially supported by NSF grant EAR-0135119 and the International Quality Network: Georisk funded by the German Academic Exchange Service. We thank the Arctic Region Supercomputing Center of the University of Alaska Fairbanks and the Leibniz Rechenzentrum Munich for access to their computational facilities. We also acknowledge support from the European Human Ressources Mobility Program (SPICE Project) for travel support and for hosting the SHaxi code (www.spice-rtn.org). Finally, we thank two anonymous reviewers, E. Saenger, and editor J. Virieux for their constructive comments which helped to improve the paper.

REFERENCES

G. Jahnke

12

